首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   4篇
  国内免费   7篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2014年   3篇
  2013年   9篇
  2012年   4篇
  2011年   9篇
  2010年   3篇
  2009年   10篇
  2008年   10篇
  2007年   8篇
  2006年   12篇
  2005年   12篇
  2004年   8篇
  2003年   7篇
  2002年   7篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   8篇
  1997年   6篇
  1996年   7篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   7篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1982年   3篇
  1981年   8篇
  1980年   9篇
  1979年   9篇
  1978年   12篇
  1977年   5篇
  1976年   8篇
  1975年   4篇
  1974年   8篇
  1973年   8篇
  1972年   4篇
排序方式: 共有262条查询结果,搜索用时 421 毫秒
51.
The endosymbiotic Chlorella sp. from Paramecium bursaria excretes maltose both in the light and in the dark. Experiments on photosynthetic 14CO2 fixation and 14CO2 pulse-chase experiments show that maltose is synthesized in the light directly from compounds of the Calvin cycle, whereas in the dark it results from starch degradation.  相似文献   
52.
SYNOPSIS. Locomotor behavior in the ciliate protozoa is controlled by the cell membrane through electrophysiological principles already familiar in receptor, nerve, and effector cells of the metazoa. This is illustrated by the avoiding reaction (15). When the membrane of the anterior part of the ciliate receives a mechanical stimulus, as during collision, it permits a local influx of Ca++. This constitutes a receptor current which depolarizes the remaining cell membrane by electrotonic spread. Depolarization causes a secondary transient increase in the calcium conductance of the entire cell membrane, and a general influx of Ca++ occurs. The resulting increase in concentration of intracellular Ca++ activates a reorientation (“reversal”) of the ciliary power stroke, causing the organism to swim backward. Forward locomotion is restored as the resting concentration of intracellular Ca++ in the cell cortex is restored by diffusion, active extrusion, or intracellular sequestering. The control and coordination of locomotion in ciliates depend on several factors in addition to the excitable properties of the membrane. These include the sensitivities of the ciliary apparatus to intracellular concentrations of calcium and other regulating substances, the anatomical distribution of sensory receptor properties of the cell membrane, and the cable properties of the cell which permit electrotonic spread of graded potential signals without need of all-or-none conducted signals.  相似文献   
53.
Deciliation of Paramecium tetraurelia by a Ca2+ shock procedure releases a discrete set of proteins which represent about 1% of the total cell protein. Marker enzymes for cytoplasm (hexokinase), endoplasmic reticulum (glucose-6-phosphatase), peroxisomes (catalase), and lysosomes (acid phosphatase) were not released by this treatment. Among the proteins selectively released is a Ca2+-dependent ATPase. This enzyme has a broad substrate specificity which includes GTP, ATP, and UTP, and it can be activated by Ca2+, Sr2+, or Ba2+, but not by Mg2+ or by monovalent cations. The crude enzyme has a specific activity of 2–3 μmol/min per mg; the optimal pH for activity is 7.5. ATPase, GTPase, and UTPase all reside in the same protein, which is inhibited by ruthenium red, is irreversibly denatured at 50°C, and which has a sedimentation coefficient of 8–10 S. This enzyme is compared with other surface-derived ATPases of ciliated protozoans, and its possible roles are discussed.  相似文献   
54.
55.
BACKGROUND INFORMATION: Transmission electron tomography is becoming a powerful tool for studying subcellular components of cells. Classical approaches for electron tomography consist of recording images along a single-tilt axis. This approach is being improved by dual-axis reconstructions and/or high-tilt devices (tilt angle>+/-60 degrees) on microscopes to compensate part of the information loss due to the 'missing wedge' phenomena. RESULTS: In the present work we have evaluated the extension of the dual-axis technique to a multiple-axis approach, and we demonstrate a freely available plug-in for the Java-based freeware image-analysis software ImageJ. Our results from phantom and experimental data sets from Paramecium tetraurelia epon-embedded sections have shown that multiple-axis tomography achieves results equivalent to those obtained by dual-axis approach without the requirement for high-tilt devices. CONCLUSIONS: This new approach allows performance of high-resolution tomography, avoiding the need for high-tilt devices, and therefore will increase the access of electron tomography to a larger community.  相似文献   
56.
Basal Body Assembly in Ciliates: The Power of Numbers   总被引:1,自引:0,他引:1  
Centrioles perform the dual functions of organizing both centrosomes and cilia. The biogenesis of nascent centrioles is an essential cellular event that is tightly coupled to the cell cycle so that each cell contains only two or four centrioles at any given point in the cell cycle. The assembly of centrioles and their analogs, basal bodies, is well characterized at the ultrastructural level whereby structural modules are built into a functional organelle. Genetic studies in model organisms combined with proteomic, bioinformatic and identifying ciliary disease gene orthologs have revealed a wealth of molecules requiring further analysis to determine their roles in centriole duplication, assembly and function. Nonetheless, at this stage, our understanding of how molecular components interact to build new centrioles and basal bodies is limited. The ciliates, Tetrahymena and Paramecium , historically have been the subject of cytological and genetic study of basal bodies. Recent advances in the ciliate genetic and molecular toolkit have placed these model organisms in a favorable position to study the molecular mechanisms of centriole and basal body assembly.  相似文献   
57.
To investigate the relationship between the Japanese Paramecium bursaria host and its symbiont, we studied the effect of a host cell-free extract on carbon fixation and photosynthate release of the symbiont. The host extract enhanced symbiotic algal carbon fixation about 3-fold at an increased concentration; however, release of photosynthate hardly changed. Since the enhancing effect was not affected by elimination of carbon dioxide from the host extract, the existence of a host factor that stimulates algal carbon fixation was made clear. The host factor is a heat-stable, low molecular weight substance. In relation to the pH dependence, the extract improved carbon fixation at acidic and neutral pH and showed almost no effect at pH 9.0. Therefore, the stimulation of carbon fixation by the host factor is unlikely to be caused by intracellular pH change. The extract also improved carbon fixation of several Chlorella species, symbiotic and free-living, and apparently exhibited no species specificity. Therefore, the host seems to regulate the photosynthesis of the symbiont via a specific compound.  相似文献   
58.
The macronucleus of Paramecium caudatum controls most cellular activities, including sexual immaturity after conjugation. Exconjugant cells have two macronuclear forms: (1) fragments of the maternal macronucleus, and (2) the new macronuclei that develop from the division products of a fertilization micronucleus. The fragments are distributed into daughter cells without nuclear division and persist for at least eight cell cycles after conjugation. Conjugation between heterokaryons revealed that the fragmented maternal macronuclei continued to express genetic information for up to eight cell cycles. When the newly developed macronucleus was removed artificially within four cell cycles after conjugation, the clones regenerated the macronuclear fragments (macronuclear regeneration; MR) and showed mating reactivity, because they were sexually mature. However, when the new macronucleus was removed during later stages, many MR clones did not show mating reactivity. In some extreme cases, immaturity continued for more than 50 fissions after conjugation, as seen with normal clones that had new macronuclei derived from a fertilization micronucleus. These results indicate that the immaturity determined by the new macronucleus is not annulled by the regenerated maternal macronucleus. Mature macronuclear fragments may be "reprogrammed" in the presence of the new macronucleus, resulting in their expression of "immaturity."  相似文献   
59.
Paramecium tetraurelia locate their␣foodsource by detecting bacterial metabolites and altering swimming behavior to congregate near bacterial populations on which they feed. Several attractants, such as folate, glutamate, cAMP and acetate have been identified and various aspects of chemoreception, signal transduction and effector mechanisms have been described. Here we characterize the Paramecium chemoresponse to biotin. An essential enzymatic cofactor in all cells, biotin is secreted by a large number of bacterial species during growth phase. P. tetraurelia are strongly attracted to biotin with a half-maximal behavioral response at 0.3 mmol · 1−1 in T-maze assays. Physiological recordings from whole cells show that cells hyperpolarize in a concentration-dependent manner in biotin. Whole-cell binding assays utilizing 3H-biotin identify a saturable and specific binding site with an apparent dissociation constant of 0.4 mmol · l−1. The biotin analogs desthiobiotin and biotin methyl ester are also strong attractants. Diaminobiotin fails to attract P. tetraurelia at 1 mmol · l−1, but does interfere with the biotin chemoresponse and displaces 3H-biotin from whole cells. We hypothesize that the keto group and/or fidelity of the ureido ring of biotin are necessary for biotin chemoresponse. Accepted: 23 April 1998  相似文献   
60.
纤毛虫与藻类的共生关系在水体环境中广泛存在并有着重要的生态功能。文章回顾了国内外纤毛虫与藻类共生研究的发展历程,主要介绍了纤毛虫与藻类共生的生态功能,以及显微观察与分子生物学技术在纤毛虫与藻类共生研究中的应用;阐述了包括草履虫与小球藻共生关系建立的4个过程及其互作机制、红色中缢虫与隐藻的共生关系、宿主与共生体之间的互作等内容;提出了纤毛虫与藻类共生研究中亟待解决的科学问题,包括草履虫食物泡膜(digestive vacuole, DV)与围藻膜(perialgal vacuole, PV)发挥作用的分子机制、红色中缢虫与隐藻共生关系的建立过程、红色中缢虫在共生过程中的功能作用等,并展望未来的研究方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号